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The objective of the present work is to examine the interaction between turbulent

mixing and chemistry by employing the method of dissipation elements in a non-

premixed turbulent jet flame. The method of dissipation elements (L. Wang and

N. Peters, J. Fluid Mech., 554 (2006): 457-475) is used to perform a space-filling

decomposition of the turbulent jet flow into different regimes conditioned on their

location with respect to the reaction zone. Based on the non-local structure of

dissipation elements this decomposition allows to discern whether points away from

stoichiometry are connected through a diffusive layer with the reaction zone. In a

next step, a regime based statistical analysis of dissipation elements is carried out by

means of data obtained from a direct numerical simulation. Turbulent mixing and

chemical reactions depend strongly on the mixture fraction gradient. From a budget

between strain and dissipation the mechanism for the formation and destruction of

mean gradients along dissipation elements is inspected. This budget reveals that large

gradients in the mixture fraction field occur at a small but finite length scale. Finally,

the inner structure of dissipation elements is examined by computing statistics along

gradient trajectories of the mixture fraction field. Thereby, the method of dissipation

elements provides a statistical characterization of flamelets and novel insight into the

interaction between chemistry and turbulence.
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I. INTRODUCTION

The coupling between small-scale turbulent mixing and chemistry plays an important

role for turbulent non-premixed flames. Under the assumption of fast chemistry, combustion

in turbulent non-premixed flames takes place in thin layers around stoichiometric mixture.

Away from stoichiometry the temperature declines and radicals recombine. In this region

mainly turbulent mixing of stable species occurs. In a two-feed system the mixing state can

be quantified by the mixture fraction,

Z =
ṁfuel

ṁfuel + ṁoxidizer

, (1)

defined as the local ratio of the mass flux originating from the fuel feed ṁf to the sum of the

mass fluxes from both fuel and oxidizer feeds. The local mixing rate is characterized by the

scalar dissipation rate

χ = 2D

(

∂Z

∂xi

)2

, (2)

which is proportional to the molecular diffusivity D and to the mixture fraction gradient

squared. Here, summation over repeated indices is implied. Large local values of the

scalar dissipation rate enhance turbulent mixing and increase the heat release, but may also

result in extinction. Then radicals leak through the reaction zone and the temperature at

stoichiometric mixture drops as diffusive heat loss exceeds heat release.

Flamelet models1,2 have succeeded in predicting the combustion in non-premixed flames.

They can be derived by an asymptotic analysis, where the turbulent flame is viewed as an

ensemble of thin laminar flame structures. The flamelet theory is a multi-scale approach

and introduces the mixture fraction Z as an independent coordinate. The scalar dissipation

rate appears in the flamelet equations as a diffusion coefficient in mixture fraction space

and accounts for the effect of turbulent mixing. Flamelets are non-local structures in the

turbulent mixture fraction field, and consist of a mixing and an embedded reaction zone

located around stoichiometric mixture. Flamelets are defined along gradient trajectories

of the mixture fraction field3, where the gradient trajectories are defined by the gradient

direction

ni =
1

‖∇Z‖

∂Z

∂xi

, (3)

which points normal to the iso-surface of the mixture fraction field towards the fuel side.

The solution of the flamelet equations is known as a function of mixture fraction Z and
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can be mapped along gradient trajectories in the mixture fraction field. Therefore, gradient

trajectories are important to examine mixing and combustion in turbulent non-premixed

flames. The governing equation of the mixture fraction field Z(x, t) can be written in

projected form along the direction of a gradient trajectory4

ρ
∂Z

∂t
+ ρun

∂Z

∂n
= ρD

∂2Z

∂n2
− ρDκZ

∂Z

∂n
+

∂(ρD)

∂n

∂Z

∂n
, (4)

where un = uini denotes the velocity projected along the gradient trajectory,

∂

∂n
= ni

∂

∂xi

(5)

denotes the derivative in the direction of the mixture fraction gradient, and

κZ = −
∂ni

∂xi

(6)

is the local curvature of the mixture fraction field, respectively. The last term of eq. (4)

accounts for the effect of spatially varying density ρ and diffusivity D.

Diffusive transport occurs in turbulent fields predominantly along gradient trajectories

which are aligned normally to the iso-surfaces of the mixture fraction field. Gradient

trajectories, which constitute the flamelet coordinates, can be constructed by tracing the

mixture fraction field in the direction of the ascending and descending gradient until a local

maximum or minimum point is reached. The ending points represent critical points of the

mixture fraction field, where the direction of the gradient trajectory is undefined, and the

Hessian of Z is either positive definite (local minimum point) or negative definite (local

maximum point). Within the gradient trajectory the mixture fraction varies monotonously.

Gradient trajectories were first used by Peters and Trouillet 3 to study turbulent mixing

in a core region of a shear layer and later by Wang and Peters 5,6 in homogeneous shear

turbulence. Wang and Peters 5,6 defined the ensemble of gradient trajectories that share

the same pair of maximum and minimum points as a dissipation element. Dissipation

elements are irregular in shape and define coherent non-arbitrary regions. These regions are

space-filling, which implies that all parts of the flow are covered when computing statistics

over dissipation elements. Dissipation elements may be characterized by simple parameters

derived from the information at the ending points. Wang and Peters 5,6 proposed to use the

scalar difference

∆Z = Zmax − Zmin (7)
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and the linear distance ℓ between the ending points. These parameters describe the fluctuation

intensity of the mixture fraction field at length scale ℓ. Wang and Peters 5,6 showed that

the mean linear distance ℓm between the extremal points is of the order of the Taylor

micro-scale λ. They argued that dissipation elements form coherent structures which are

diffusively connected at length scales being much larger than the Kolmogorov scale η or

Batchelor scales ηB. A schematic of a two-dimensional dissipation element is depicted in

fig. 1. As a third independent parameter Peters and Trouillet 3 introduced additionally the

arithmetic mean,

Zm =
Zmax + Zmin

2
, (8)

of the mixture fraction between the ending points. The arithmetic mean Zm describes in

conjunction with ∆Z the precise location of the gradient trajectory in mixture fraction space.

The three parameters ℓ, ∆Z, and Zm contain from a statistical point of view most of the

information about the mixture fraction field. A dissipation element based mean mixture

fraction gradient g can be defined as

g =
∆Z

ℓ
, (9)

For brevity, we refer to g as mean gradient in the following. Due to the monotonicity

of the mixture fraction along a gradient trajectory g has a positive, non-vanishing mean.

Moreover, g is proportional to the mean diffusive flux between extremal points connected

through gradient trajectories. The mean gradient g plays an important role to examine

the efficiency of turbulent mixing because the second order moment of g can be related on

dimensional grounds to the mean scalar dissipation

〈g2〉 ∝
〈χ〉

D
. (10)

It is important to emphasis the difference between the scalar difference ∆Z of dissipation

elements and the scalar increment δrZ = Z(x + r) − Z(x). The scalar increment δrZ is

computed continuously along a straight line and the separation distance r between the two

points is fixed in advance. While, on the other hand, for dissipation elements the scalar

difference ∆Z is conditioned on local extremal points which are connected through gradient

trajectories. The length scale ℓ results from the turbulent field itself, rather than being

prescribed externally. This way of averaging is therefore able to capture information about

the local structure of a turbulent field, which is otherwise averaged-out.
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FIG. 1. Schematic of a two-dimensional dissipation element. Single gradient trajectories are

illustrated by blue lines and connect a local minimum point (Zmin) with a local maximum point

(Zmax) of the mixture fraction field. Gradient trajectories are oriented normal to the iso-lines of the

mixture fraction field (red, dashed).

The objective of the present work is to analyze a direct numerical simulation of a turbulent

non-premixed jet flame to examine the interaction between turbulence and chemistry by

employing the method of dissipation elements. The method of dissipation elements is utilized

as a post-processing technique to detect gradient trajectories. The paper is organized in the

following way. We begin in sec. II with a brief overview of the direct numerical simulation

(DNS) on which the analysis with dissipation elements is based. In sec. III we carry out a

zonal decomposition of the non-premixed flame based on the ending points of dissipation

elements and introduce three different regimes. This decomposition allows us to examine

whether points away from stoichiometric mixture are linked through a diffusive layer with

the surface of stoichiometric mixture. In sec. IV we present several statistical properties of

dissipation elements and discuss cliff-ramp-like structures. From a balance between strain

and diffusion we explain in sec. V the mechanism for the formation and destruction of mean

gradients along dissipation elements. Finally, we examine in sec. VI the inner structure of

dissipation elements and compute statistics along individual gradient trajectories to show how

a mixture fraction gradient along gradient trajectories affects chemical reaction. Concluding

remarks are given in sec. VII.
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FIG. 2. Illustration of DNS setup. The figure shows that the initial mean mixture fraction profile is

wider than the initial mean stream-wise velocity profile.

II. DIRECT NUMERICAL SIMULATION OF A TURBULENT

NON-PREMIXED JET FLAME

A direct numerical simulation (DNS) of a turbulent temporally-evolving planar CO/H2

jet flame has been carried out with a setup closely related to case H of Hawkes et al. 7 . The

flow configuration is illustrated schematically in fig. 2. The fuel stream is composed of 50%

CO, 10% H2, and 40% N2 by volume. The oxidizer stream, surrounding the fuel stream, is

composed of 25% O2 and 75% N2. The stoichiometric mixture fraction equals Zst = 0.42, thus

being located in the shear layer of the jet in a region of high turbulence intensity. Chemical

kinetics are represented by a reduced mechanism with 21 reactions and 11 species, see Li 8 .

The DNS solves the transport equations for momentum, temperature, and species in a

low-mach number formulation. Spatial derivatives are computed by a sixth order explicit

scheme, and temporal integration is performed by an explicit fourth-order low-storage Runge-

Kutta scheme. The Poisson equation for the pressure is solved in spectral space. Details

of the numerical procedure are summarized by Abdelsamie et al. 9 and Abdelsamie and

Thevenin 10 . The DNS employs a rectangular geometry with periodic boundary conditions in

stream-wise and span-wise directions, and outlet boundary conditions in cross-wise direction.

The governing equations are discretized on a structured uniform mesh with 512 × 1025 × 1024

grid points, in span-wise, cross-wise, and stream-wise directions, respectively. The size of

the computational domain is 7H0 × 14H0 × 14H0, where H0 denotes the initial jet width.
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FIG. 3. Temporal evolution of jet height H, mean dissipation 〈ε〉st, and mean turbulent kinetic

energy 〈k〉st. The ensemble-averages are conditioned on a small band, 0.8Zst < Z < 1.2Zst, around

stoichiometric mixture and normalized with the initial velocity difference ∆U0 and the initial jet

width H0. Note that 〈ε〉st and 〈k〉st are scaled by a factor of 100. The time steps considered for

analysis are indicated by the vertical dashed lines.

The jet width H is defined as the distance between the points, where the mean cross-stream

velocity profile declines to 50% of the center-line value. Similar to the reference case7 we

triggered turbulence by initializing a broadband random Gaussian velocity field that is filtered

outside the jet core. The initial cold-flow Reynolds number, based on the initial jet width

H0, the initial velocity difference ∆U0 = Ufuel − Uoxidizer, and the pure fuel viscosity νf is

close to Re0 = 9075. Resolving the smallest scales of turbulent flows by the numerical grid is

crucial for the accuracy of the DNS and the subsequent analysis by the method of dissipation

elements. For the time steps t1 and t2 indicated in fig. 3 the ratio η/∆x at the center plane

of the jet equals 0.93 and 1.39, respectively, where η denotes the Kolmogorov length scale,

and ∆x denotes the uniform grid width.

Let us now briefly analyze the temporal evolution of the turbulent jet flow. To account

for the interaction between chemistry and turbulence we introduce an ensemble-average

conditioned on a small band, 0.8Zst < Z < 1.2Zst, centered around stoichiometric mixture

(denoted by 〈·〉st). The temporal evolution of the mean turbulent energy 〈k〉st and the mean

dissipation 〈ε〉st are shown in fig. 3. Both curves are normalized by the initial values ∆U0 and

H0 and exhibit an initial transient before turbulence turns into a decaying state beginning
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with t/tref ≈ 10. The reference time scale is defined as

tref =
H0

∆U0

. (11)

Additionally, fig. 3 shows the non-dimensional jet width H/H0, where after an initial transient

a linear growth is observed.

In the following we present an analysis based on two different time steps at t1 = 19 tref and

t2 = 29 tref . At these time steps chemistry interacts with fully developed decaying turbulence.

III. ZONAL DECOMPOSITION

The aim of the present section is to perform a physically motivated zonal decomposition

of the turbulent jet flow based on the ending points of dissipation elements.

We adapted the algorithm developed by Wang and Peters 5 to trace gradient trajectories

on the instantaneous mixture fraction field of the turbulent jet flow. The present analysis

required modifications of the algorithm as the original work studied homogeneous shear

turbulence in a triply periodic box. The jet flow under consideration is inhomogeneous in

cross-stream direction and reveals a complex morphology with a fully developed turbulent core

region adjacent to an outer irrotational region. Some gradient trajectories originating from

the turbulent core enter the irrotational region and may proceed further without reaching

an extremal point. The tracing of these trajectories is therefore stopped when a mixture

fraction threshold Z ≤ 0.05 is attained.

Mellado, Wang, and Peters 11 applied gradient trajectory analysis to perform a spatial

partitioning of a temporally-evolving turbulent shear flow in an outer irrotational regime

and an inner fully developed turbulent regime. The transition between the turbulent and

non-turbulent region occurs across a thin layer of finite size, which was referred to as the

turbulent/non-turbulent interface (T/NT)12,13. In a turbulent non-premixed flame a second

interface of finite thickness, namely the reaction zone, can be identified in the vicinity of

stoichiometric mixture, dividing the mixture fraction field into a fuel lean and a fuel rich

zone. The reaction zone becomes singular in the limit of infinitely fast chemistry. For finite

rate chemistry the local thickness of the reaction zone depends on the Damköhler number. A

strong interaction with turbulence or slow chemistry results in a broadening of the reaction

zone.
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FIG. 4. Marginal probability distribution of the mixture fraction P (Z) at t1 (black) and t2 (red).

Both pdf exhibit a bimodal shape with a minimum located at Z = 0.14 and Z = 0.08, respectively.

FIG. 5. Two-dimensional slice of the instantaneous mixture fraction field Z in the y-z plane at

t/tref = 19. Gradient trajectories are schematically shown in the different regimes by colored dashed

lines. The white line indicates the location of stoichiometric mixture fraction and the black line

indicates the location of the T/NT-interface. Note that gradient trajectories from regime II and III

can cross the T/NT-interface and enter the irrotational outer region.

We partition the turbulent jet flame into three different regimes (numbered by I, II and

III) based on the value of the mixture fraction at the ending points of the trajectories.

It is important to note that all gradient trajectories from a dissipation element belong to
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the same regime as the zonal decomposition is based solely on the ending points. The

partitioning allows us to discriminate between dissipation elements that are subject to

chemical reaction and those that are mainly subject to turbulent mixing. The decomposition

based on dissipation elements is self-contained and has the properties of completeness and

uniqueness. This means that each material point should be included once and only once in

the decomposed object14,15.

The first regime (I) is defined as the inner, fuel rich core region of the jet, where gradient

trajectories do not cross the iso-surface of stoichiometric mixture, i.e. 1 ≥ Zmax > Zmin > Zst.

In this regime turbulent mixing prevails compared to chemical reaction. For the present

study, the value of Zst is about 0.42 yielding the iso-surface of stoichiometric mixture

being located in the fully developed turbulent part of the jet flow. The second regime

(II) contains all dissipation elements that cross the iso-surface of stoichiometric mixture.

Trajectories in this regime are subject to both turbulent mixing and chemical reaction. These

dissipation elements connect a maximum point at the fuel rich side with Zmax > Zst and a

minimum point at the fuel lean side with Zmin < Zst. Trajectories intersecting the iso-surface

of stoichiometric mixture provide information about the flame structure not only in the

vicinity of the stoichiometric surface, but also further away from it. In other words: the

two-point character of gradient trajectories provides information whether a point away from

stoichiometric mixture is connected through a diffusive layer with the reaction zone. This

feature is important for the following statistical analysis. Beyond the surface of stoichiometric

mixture, there is a third regime (III) for dissipation elements with 0 ≤ Zmin < Zmax < Zst.

This regime lies in the fuel lean region of the jet where turbulent mixing prevails over chemical

reaction. Additionally, the edge of the turbulent jet flow is characterized by a second interface

dividing the flow in a non-turbulent outer region and a fully developed turbulent inner

region. The location of the T/NT-interface has been determined by following the procedure

described by Prasad and Sreenivasan 16 , who defined the location of the T/NT-interface in

mixture fraction space as the local minimum of the bimodal shaped marginal mixture fraction

probability density function (pdf) P (Z). This pdf is displayed in fig. 4 and shows that the

minimum is located at Z = 0.14 for t1 and at Z = 0.08 for t2. Trajectories originating from

regime (II) and (III) can cross the T/NT-interface and enter the irrotational outer region. On

the other hand, that means only trajectories that do not cross the T/NT-interface experience

turbulent mixing over their whole length. Figure 5 illustrates the zonal decomposition by
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means of a two-dimensional representation of the mixture fraction field in the y-z plane.

Dissipation elements in the different regimes are illustrated schematically by bold colored

lines. For notational convenience the ensemble of all dissipation elements belonging to regimes

I-III is denoted as regime IV.

Let us now analyze the different regimes in mixture fraction space by the statistics of

Zm and ∆Z. The jpdf P (Zm, ∆Z) illustrates the effect of turbulent mixing and provides

information where dissipation elements are precisely located in mixture fraction space.

Figure 6 shows P (Zm, ∆Z) for both time steps t1 and t2. The jpdf reveals a triangular shape

with sharp boundaries, where the boundaries are imposed through the boundedness of the

mixture fraction. They obey the conditions Zm = ∆Z/2 and Zm = −∆Z/2 + Zmax, with

Zmax being the maximum value of the mixture fraction field. During the temporal decay

of the jet, Zmax decreases from Zmax = 0.99 for t1 to Zmax = 0.94 for t2. The intersection

between the regime boundary lines imposes an upper limit for ∆Z, which moves to lower

values during decay of the jet flow. As a consequence, the jpdf becomes singular at ∆Z = 0 in

the limit t → ∞. Figure 6 also displays the regime borders. The boundary between regimes

I and II (black dashed-dotted line) obeys the relation Zm = ∆Z/2 + Zst, while the boundary

between regimes II and III (black dashed line) is determined by Zm = −∆Z/2 + Zst. As the

regime boundaries depend solely on Zst they do not change with time. By definition, gradient

trajectories from regime I and from regime III cannot intersect the surface of stoichiometric

mixture.

For the first time step t1, the jpdf P (Zm, ∆Z) exhibits a distinct maximum around

∆Z = 0.2 and Zm = 0.85 indicating that most dissipation elements have a relatively small

scalar difference and are situated in a fuel rich region in regime I. On the other hand, there

are also dissipation elements spanning a scalar difference close to unity. Owing to the regime

decomposition these dissipation elements belong to regime II. During the turbulent mixing

process this distinct maximum disappears and new dissipation elements are generated with

different pairs of Zm and ∆Z, cf. fig. 6(right).

IV. STATISTICAL ANALYSIS OF DISSIPATION ELEMENTS

In the following we employ the zonal decomposition and discuss statistical properties of

dissipation elements in different regimes of the jet. Table I summarizes global statistical
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FIG. 6. Joint pdf of Zm and ∆Z for t1 (left) and t2 (right). The jpdfs reveal a triangular shape

with sharp borders imposed by the boundedness of the mixture fraction (black solid lines). Also

the different regimes and the regime boundaries (dashed lines) are indicated.

properties of dissipation elements obtained from the different regimes for both time steps under

consideration. For both time steps, the largest mean length ℓm is observed for trajectories

from regime II, since only these trajectories can connect the turbulent core region with the

irrotational outer flow. The normalized mean length ℓ∗
m = ℓm/H0 increases for all regimes

with time which comes from an increase of turbulent length scales during the decay process

of the jet flow. Additionally, tab. I indicates the normalized mean mixture fraction difference

〈∆Z∗〉 = 〈∆Z〉/∆Z0, the normalized mean mixture fraction between the extremal points

〈Z∗
m〉 = 〈Zm〉/∆Z0, and the normalized mean gradient 〈g∗〉 defined as

〈g∗〉 =
〈g〉
∆Z0

H0

. (12)

Angular brackets denote a dissipation element based ensemble-average. In the following, all

quantities marked with an asterisk are normalized by the initial jet width H0, the initial

velocity difference ∆U0, and the initial mixture fraction difference ∆Z0. It is notable that

regime II has the highest mean scalar difference 〈∆Z∗〉 and the highest mean gradient 〈g∗〉.

A. Joint Distributions of ∆Z and ℓ

Additional information about the local structure of the turbulent mixture field is provided

by the joint statistics of the length ℓ and the scalar difference ∆Z. These two quantities are

12



TABLE I. Parameters of dissipation elements for time step t1 (left) and t2 (right), listed for the

fuel rich regime (I), the stoichiometric regime (II), and the fuel lean regime (III). The ensemble of

all regimes is denoted by “all”.

I II III all

ℓm/H0 0.39 0.49 0.16 0.41

〈∆Z∗〉 0.23 0.58 0.09 0.35

〈Z∗
m〉 0.76 0.46 0.06 0.58

〈g∗〉 0.70 1.64 0.44 1.05

I II III all

ℓm/H0 0.54 0.60 0.22 0.45

〈∆Z∗〉 0.20 0.53 0.10 0.32

〈Z∗
m〉 0.67 0.38 0.07 0.31

〈g∗〉 0.44 1.19 0.31 0.75

the object of interest here. The normalized jpdf P (∆Z∗, ℓ∗) and the normalized conditional

average 〈∆Z∗|ℓ∗〉 are shown in fig. 7 for all regimes. It is seen that ∆Z∗ and ℓ∗ are not

independent and that long dissipation elements have on average also a large scalar difference

∆Z∗. This finding is also supported by the conditional mean 〈∆Z∗|ℓ∗〉, which increases

monotonously with ℓ∗. The jpdf P (∆Z∗, ℓ∗) illustrates different physical effects. The upper

left corner of the jpdf, where ℓ∗ is small but ∆Z∗ attains already large values close to unity,

represents poorly mixed regions, where the mean gradients g = ∆Z/ℓ are large. Well mixed

regions occur at the lower left edge of the jpdf where ∆Z∗ becomes small at a finite length

scale ℓ∗. This region is pronounced for regimes I and III but is less significant for regime II.

The jpdf P (∆Z∗, ℓ∗) exhibits a maximum, which is located around ℓ∗ ≈ 0.3 and ∆Z∗ ≈ 0.2

for regimes I and III, and at the same length scale but at a significantly higher value of

∆Z∗ ≈ 0.5 for regime II. Hence, dissipation elements from regime II connect especially

extremal points with a higher scalar difference. This finding is supported by the considerably

larger mean mixture fraction difference 〈∆Z∗〉 for regime II given in tab. I. From this finding

the question arises in which regime and at which length scale large mean gradients g will

occur.

B. Joint Distributions of g and ℓ

From dimensional arguments, the mean gradient g and the scalar dissipation χ are

related, cf. eq. (10). Therefore, the jpdf P (g, ℓ) is of interest and provides a scale-dependent

information about the mixing rate of turbulent flows. The jpdfs of the normalized mean

13



 

 
∆
Z
∗

ℓ∗
 .  .  .

−







.

.

.

.



 

 

∆
Z
∗

ℓ∗
 .  .  .

−







.

.

.

.



 

 

∆
Z
∗

ℓ∗
 .  .  .

−







.

.

.

.



 

 

∆
Z
∗

ℓ∗
 .  .  .

−







.

.

.

.



FIG. 7. Normalized joint pdf of ∆Z∗ and ℓ∗ for regimes I, II (top,left to right), and regime III

and the ensemble of all dissipation elements (bottom, left to right) for t2. The conditional mean

〈∆Z∗|ℓ∗〉 is indicated by black circles.

gradient g∗ and the normalized length ℓ∗ are shown in fig. 8 for all regimes. The contour levels

are scaled logarithmically. With respect to g∗ the jpdfs exhibit a long tail meaning that very

large but rare excursions from the mean value 〈g∗〉 occur. In the literature this phenomenon

is known as internal intermittency, see Sreenivasan and Antonia 17 and Warhaft 18 . The tail of

P (g∗, ℓ∗) is most pronounced for regime II, where large mean gradients g∗ (which are as large

as 8 times the reference value ∆Z0/H0) are situated at an intermediate length scale and not

in the limit ℓ∗ → 0. This results from the fact that ∆Z∗ and ℓ∗ are not independent, and that

∆Z∗ is affected by molecular damping at the smallest scales. Despite averaged over the length

of a dissipation element, the mean gradient g∗ is a highly intermittent quantity. Relatively

steep jumps in the mixture fraction value manifest themselves as cliff-like structures. They
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FIG. 8. Normalized joint pdf of g∗ and ℓ∗ for regimes I, II (top, left to right), regime III and the

ensemble of all dissipation elements (bottom, left to right) with logarithmically scaled color-level

for t2. The conditional mean 〈g∗|ℓ∗〉 is indicated by a black line.

show-up primarily in thin, highly confined layers, which are typically formed by a compressive

straining motion, cf. Brethouwer, Hunt, and Nieuwstadt 19 and Ishihara, Kaneda, and Hunt 20 .

The width of these hardly mixed layers can be defined as the length scale ℓ∗ at which the

maximum value of the conditional mean 〈g∗|ℓ∗〉 occurs and equals approximately ℓ∗ ≈ 0.1

independently of the regime. Strong molecular transport in the direction along gradient

trajectories takes place predominantly over this length scale. On the other hand, ramp-like

structures are found in fig. 8 at the lower right tail of the joint pdf. There, the scalar

difference ∆Z∗ varies monotonously over a length scale of more than ℓ∗ = 2.5, which equals

roughly the size of the jet width at the considered time step t2, cf. fig. 3.
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V. COMPRESSIVE AND EXTENSIVE STRAIN ALONG DISSIPATION

ELEMENTS

The generation of cliff-like structures in the turbulent mixing field is driven by a straining

motion over an intermediate length scale19,21. This finding results from a preferential

alignment of the scalar gradient with the direction of the most compressive strain rate22.

The relevant mechanism for a distortion of dissipation elements is a velocity difference ∆un

between the ending points, which results in a change of the length ℓ. Only a velocity difference

directed along the line connecting the extremal points can cause this length change. Figure 9

shows the conditional strain rate aℓ normalized by its asymptotic value a∞ = aℓ(ℓ → ∞) for

all regimes as a function of ℓ∗. The curves show the characteristic shape already found for

dissipation elements in non-reactive flows, see Gampert et al. 23 and Wang 24 . The conditional

strain rate is negative for small elements with ℓ∗ < 0.2 indicating that small elements are on

average subject to compressive strain. For longer elements with ℓ∗ > 0.5, the strain rate aℓ

becomes positive and tends to a constant value a∞. These elements are on average subject

to extensive strain. Additionally, we observe that a normalization with a∞ allows for a very

good collapse of all curves independently of the regime.

To explain the formation of gradients in dissipation elements in more detail a balance

between gradient production and gradient dissipation is examined. The temporal macroscopic

change of g for an individual dissipation element can be written as

dg

dt
=

1

ℓ

d∆Z

dt
−

∆Z

ℓ2

dℓ

dt
. (13)

A change of ∆Z is attributed to diffusion and predominantly takes place at small scales

where the gradient between the extremal points is very steep. An analytical expression for

this term was derived by Wang 15 by analyzing the relative motion of two adjacent extremal

points in the limit of small scales. In three dimensions it reads

d∆Z

dt
= −12D

∆Z

ℓ2
. (14)

The negative sign indicates that diffusivity results in a reduction of the scalar difference ∆Z

between adjacent extremal points and thus to a destruction of g. At larger scales the relevant

mechanism for a temporal change of g stems from a velocity difference ∆un between the

ending points of a dissipation element. A compressive strain acting on dissipation elements
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FIG. 9. Normalized conditional strain rate aℓ/a∞ = 〈∆un|ℓ∗〉/(a∞ℓ), for all regimes for t1 (top)

and t2 (bottom).

shortens the distance ℓ between maximum and minimum point. During this process the

scalar difference ∆Z remains virtually unchanged, so that compressive strain leads to an

increase of g. Hence, the temporal change of ℓ in eq. (13) can be written as

dℓ

dt
= ∆un . (15)

In agreement with Kolmogorov’s second hypothesis25,26 the turbulent motion at larger scales

is independent of the molecular diffusivity D. Using eqs. (15) and (14) in eq. (13) gives

dg

dt
= −12D

g

ℓ2
− aℓg , (16)

where the first term on the right hand side can be interpreted as a destruction of g due to

diffusivity and the second term as a production of g due to strain.
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To further examine the destruction and production of g, eq. (16) is conditioned on the

length-scale ℓ and written normalized by H0, ∆U0 and ∆Z0, i.e.

d〈g∗|ℓ∗〉

dt∗
= − 12Pe−1〈

g∗

ℓ∗2 |ℓ∗〉
︸ ︷︷ ︸

D∗

ℓ

−〈a∗

ℓg
∗|ℓ∗〉

︸ ︷︷ ︸

P∗

ℓ

, (17)

where the Peclet number is defined as

Pe =
∆U0H0

D
. (18)

The gradient 〈g∗|ℓ∗〉, and its production P∗
ℓ and destruction D∗

ℓ are shown as a function of ℓ∗

in fig. 10. It is seen that D∗
ℓ increases monotonously towards smaller scales. This underlines

the small-scale nature of D∗
ℓ , which becomes effective when the gradient steepens. On the

other hand, P∗
ℓ reveals a distinct maximum at a finite length scale ℓ∗ = 0.1 and drops to zero

towards the origin. The peaks of 〈g∗|ℓ∗〉 and P∗
ℓ occur at the same length scale indicating

that P∗
ℓ induces the formation of g∗. Moreover, P∗

ℓ becomes negative at larger scales and

turns into a moderate sink term, since larger scales are dominated on average by extensive

strain, cf. fig. 9. The effect of fast processes (cf. Schaefer et al. 27) is not covered by eq. (17).

By splitting or reconnection processes new dissipation elements with different mean gradients

are generated at new length scales, cf. fig. 11. This explains why the mean gradient 〈g∗|ℓ∗〉

declines slowly towards larger scales while the gradient production P∗
ℓ due to slow processes

acts mainly localized at smaller length scales.

Combining these findings allows us to refine the understanding of the formation of the

mean gradient 〈g∗|ℓ∗〉 of dissipation elements. In agreement with the enhanced gradient

production towards small scales, 〈g∗|ℓ∗〉 reveals a steady increase towards smaller scales

until the damping effect of diffusivity cuts in at the smallest scales. The balance between

production through compressive strain and destruction of g∗ through molecular damping

results in the characteristic shape of 〈g∗|ℓ∗〉 with a steep decline towards the origin and a

distinct maximum at a finite length scale. It is noteworthy that the gradient based on the

scalar increment
δrZ

r
=

Z(x + r) − Z(x)

r
(19)

reveals a different limiting behavior for r → 0, as for arbitrary even moments the limit

lim
r→0

〈(δrZ)2n〉

r2n
= 〈

(

∂Z

∂x

)2n

〉 (20)

tends to the respective non-zero scalar gradient moment.
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FIG. 10. Balance between the normalized conditional gradient production P∗
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pation D∗
ℓ for time step t1 (top) and t2 (bottom). Additionally the normalized conditional mean

gradient 〈g∗|ℓ∗〉 is shown.

VI. THE INNER STRUCTURE OF DISSIPATION ELEMENTS

Chemical reaction takes place in thin confined layers around stoichiometric mixture.

In order to accurately describe chemical reactions additional information about the inner

structure of dissipation elements is necessary. This information is provided by analyzing

individual gradient trajectories. The zonal decomposition, cf. sec. III, provides additional

information, whether gradient trajectories are connected with the stoichiometric surface.

Let us now apply zonal statistics of gradient trajectories to show how chemical reactions
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FIG. 11. Illustration of a splitting and a reconection event in one-dimensional space. By splitting

one large dissipation element is cut in three small elements. By reconnection smaller dissipation

elements are joint together and one large element appears.

are affected by turbulence. To do so, we trace all gradient trajectories and restrict the

analysis to gradient trajectories belonging to regime II, since only these gradient trajectories

intersect the stoichiometric surface and have the ability to burn.

Figure 12 shows the dependence of the mean maximum temperature 〈Tmax〉/Tq computed

over all trajectories of regime II on the mean gradient g∗ for the two time steps under

consideration. It is clearly seen for both time steps that an increase of g∗ leads to a decrease

of 〈Tmax〉/Tq. For large values of g∗ the diffusive transport along the trajectory is enhanced,

which reduces 〈Tmax〉/Tq and results in quenching when 〈Tmax〉/Tq falls below unity. This

phenomenon is well known in the context of flamelet models, where the conditional scalar

dissipation 〈χ|Z〉 acts as a diffusivity in mixture fraction space and affects the temperature28.

The temperature declines with increasing scalar dissipation rate until a critical value of the

scalar dissipation rate χq is attained. Extinction occurs for values above χq. The analogy

between the flamelet parameter 〈χ|Z〉 and g∗ underlines the relevance of dissipation elements

for the parameterization of non-premixed turbulent flames. For the later time step the shape

of 〈Tmax〉/Tq is very similar to the early time step but situated at a higher temperature level.

This is due to the fact that the global scalar dissipation is decreasing at later times causing

a re-ignition of the flame.

Further details about the impact of local fluctuations of the mixture fraction field on

chemistry can be obtained by examining statistics of chemical species. Here, we consider the

mass fraction of the species OH, which is often utilized as a marker for the flame position.

Figure 13 shows the joint pdf of the mass fraction YOH and the normalized gradient g∗
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FIG. 12. Maximum temperature 〈Tmax/Tq|g∗〉 of trajectories belonging to regime II as a function of

the normalized gradient g∗ for the two different time steps t1 and t2. The temperature is normalized

by the quenching temperature Tq = 1303 K.

conditioned on trajectories belonging to regime II. The OH mass fraction is normalized by

its quenching value YOH,q, which is obtained from a one-dimensional flamelet calculation

under conditions similar to the DNS. Trajectories with YOH/YOH,q < 1 are considered to be

quenched. The joint pdf reveals for both time steps strong fluctuations around the conditional

mean value 〈YOH/YOH,q|g∗〉. Especially for smaller values of g∗, i.e. g∗ < 6, both burning

and quenched states can be observed. For g∗ > 6, nearly all trajectories are quenched, which

is in agreement with the behavior of 〈Tmax|g∗〉 discussed before. These findings signify that

not only the local mixing state determines chemistry, but also the time history, at which the

mixing state is reached. Similar conlcusions were drawn by Scholtissek et al. 29 by analyzing

the temporal evolution of individual gradient trajectories in a turbulent non-premixed jet

flame.

In a next step, the inner structure of gradient trajectories is studied by the conditional

average of the scalar dissipation 〈χ|Z〉. The conditional scalar dissipation is of interest in the

context of flamelet models, where it has to be specified as an external parameter. By knowing

the precise path of gradient trajectories, we can restrict our analysis to trajectories from

regime II and further discriminate between burning and non-burning trajectories. Burning

trajectories are defined as those trajectories whose local maximum temperature Tmax exceeds

the quenching temperature Tq. A dissipation element can contain both “burning” and
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FIG. 13. Joint pdf of the mass fraction of OH and the normalized gradient g∗ for different time

steps t1 (left) and t2 (right) conditioned on trajectories belonging to regime II.

“quenched” trajectories. Figure 14 shows the conditional scalar dissipation 〈χ|Z〉 calculated

along gradient trajectories, where a distinction into burning and non-burning trajectories is

displayed. It is clearly seen that “quenched trajectories” experience a significantly higher

conditional scalar dissipation rate compared to “burning trajectories”. Additionally, the

“quenched trajectories” exhibit a bell-like shape with a maximum located close to stoichiometric

mixture, while the “burning trajectories” reveal a two-hump shape. A bell-like shape is

in agreement with the error-function-model, which is an analytical solution for 〈χ|Z〉 in a

counter-flow configuration28. A two-hump shape for 〈χ|Z〉 was observed before by Mellado,

Wang, and Peters 11 and Pantano, Sarkar, and Williams 30 in turbulent shear flows. In

turbulent flames, the heat release and the associated increase of viscosity results in a

damping of gradients around stoichiometric mixture favoring a two-hump shape of 〈χ|Z〉.

For “quenched trajectories” the heat release around stoichiometric mixture is lacking and

the bell-like shape is preserved. This observation is relevant for flamelet models. Employing

the same model for 〈χ|Z〉 in both burning and quenched regimes may not be sufficient to

correctly represent the interaction between turbulent mixing on chemistry.

VII. CONCLUDING REMARKS

Dissipation element analysis has been applied to a direct numerical simulation of a non-

premixed temporally evolving jet flame. First, dissipation elements have been computed on
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FIG. 14. Conditional average of the scalar dissipation rate 〈χ|Z〉 for time step t2. Additionally, for
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the mixture fraction field Z and parameterized by the arithmetic mean Zm and the difference

∆Z between the ending points. Based on this parameterization a novel decomposition for

turbulent reactive jet flows based on the location of the stoichiometric surface was introduced.

The decomposition defines three different regimes: a fuel rich regime (denoted by regime

I), a fuel lean regime (regime III), and a stoichiometric regime (regime II). The method of

dissipation elements is self-contained, meaning each grid point is included once and only

once in the decomposition. Due to the two-point character of dissipation elements, the

decomposition contains connectivity information and allows to discern whether points away

from stoichiometric mixture are connected through a diffusive layer with the reaction zone, or

whether dissipation elements leave the turbulent core of the jet and enter the irrotational outer

flow. Statistics of Zm and ∆Z contain information about the exact location of dissipation

elements in mixture fraction space. Distinct characteristics about the temporal mixing

process have been illustrated by a joint pdf of Zm and ∆Z. Constraints for the regime

boundaries have been derived from analytic kinematic relations. It was shown that initially

most dissipation elements lie in the turbulent fuel rich regime and are distributed to the

other regimes during the decay of the jet.

In a next step, a regime based statistical analysis of dissipation elements was carried

out. Joint statistics of length ℓ and scalar difference ∆Z between the ending points were
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analyzed for the different regimes. Both quantities are correlated and is was shown that

long dissipation elements have on average a large difference ∆Z. A dissipation element

based gradient g = ∆Z/ℓ was introduced in order to study turbulent mixing. The statistical

analysis revealed that the largest gradients occur at an intermediate length scale.

Dissipation elements interact with the turbulent motion of the velocity field. To investigate

the formation of the dissipation element based gradient, the velocity difference ∆un between

the ending points of dissipation elements was introduced. It was shown that small dissipation

elements are subject to compressive strain while larger elements are subject to extensive

strain. A kinematic equation for the mean gradient g∗ has been derived to highlight the

effect of diffusivity and strain on the formation of gradients in the mixture fraction field.

This balance between production due to compressive strain and destruction of g∗ due to

molecular damping was shown to lead to the characteristic shape of 〈g∗|ℓ∗〉 with a steep

decline towards the origin and a distinct maximum at a finite length scale.

Through the connection to gradient trajectories, the method of dissipation elements

provides a statistical characterization of flamelets, and thereby novel insight into the interac-

tion between chemistry and turbulence. In order to describe chemical reactions the inner

structure of dissipation elements has been examined by considering the path of individual

gradient trajectories. By restricting the analysis to regime II it has been shown that an

increasing mean gradient g reduces the maximum temperature Tmax along gradient trajecto-

ries. Moreover, the conditional scalar dissipation 〈χ|Z〉 has been computed for regime II,

where the access to individual gradient trajectories allows to discern between burning and

non-burning trajectories. The conditional scalar dissipation reveals a two-hump shape for

burning gradient trajectories, and a bell-like shape at a significantly higher level for quenched

gradient trajectories.
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Direct Numerical Simulations of low-Mach number turbulent reacting and two-phase flows

using Immersed Boundaries,” Computers & Fluids (2016).

10A. Abdelsamie and D. Thevenin, “Direct numerical simulation of spray evaporation and

autoignition in a temporally-evolving jet,” in Proceedings of the Combustion Institute,

Vol. 35 (Elsevier, 2016, accepted for publication).

11J. P. Mellado, L. Wang, and N. Peters, “Gradient trajectory analysis of a scalar field with

external intermittency,” Journal of Fluid Mechanics 626, 333–365 (2009).

12C. B. da Silva, J. C. Hunt, I. Eames, and J. Westerweel, “Interfacial layers between regions

25



of different turbulence intensity,” Annual Review of Fluid Mechanics 46, 567–590 (2014).

13J. Westerweel, T. Hofmann, C. Fukushima, and J. Hunt, “The turbulent/non-turbulent

interface at the outer boundary of a self-similar turbulent jet,” Experiments in Fluids 33,

873–878 (2002).

14M. Gauding, J. H. Goebbert, C. Hasse, and N. Peters, “Line segments in homogeneous

scalar turbulence,” Physics of Fluids 27, 095102 (2015).

15L. Wang, Geometrical description of homogeneous shear turbulence using dissipation element

analysis, Ph.D. thesis, Shaker Verlag (2008).

16R. Prasad and K. Sreenivasan, “Scalar interfaces in digital images of turbulent flows,”

Experiments in fluids 7, 259–264 (1989).

17K. R. Sreenivasan and R. Antonia, “The phenomenology of small-scale turbulence,” Annual

review of fluid mechanics 29, 435–472 (1997).

18Z. Warhaft, “Passive scalars in turbulent flows,” Annual Review of Fluid Mechanics 32,

203–240 (2000).

19G. Brethouwer, J. Hunt, and F. Nieuwstadt, “Micro-structure and lagrangian statistics of

the scalar field with a mean gradient in isotropic turbulence,” Journal of Fluid Mechanics

474, 193–225 (2003).

20T. Ishihara, Y. Kaneda, and J. C. Hunt, “Thin shear layers in high Reynolds number

turbulence – DNS results,” Flow, turbulence and combustion 91, 895–929 (2013).

21C. Tong and Z. Warhaft, “On passive scalar derivative statistics in grid turbulence,” Physics

of Fluids 6, 2165–2176 (1994).

22W. T. Ashurst, A. Kerstein, R. Kerr, and C. Gibson, “Alignment of vorticity and scalar

gradient with strain rate in simulated Navier-Stokes turbulence,” Physics of Fluids (1958-

1988) 30, 2343–2353 (1987).

23M. Gampert, J. H. Goebbert, P. Schaefer, M. Gauding, N. Peters, F. Aldudak, and

M. Oberlack, “Extensive strain along gradient trajectories in the turbulent kinetic energy

field,” New Journal of Physics 13, 043012 (2011).

24L. Wang, “Scaling of the two-point velocity difference along scalar gradient trajectories in

fluid turbulence,” Physical Review E 79, 046325 (2009).

25A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for

very large Reynolds numbers,” in Dokl. Akad. Nauk SSSR, Vol. 30 (JSTOR, 1941) pp.

301–305.

26



26A. N. Kolmogorov, “Dissipation of energy in locally isotropic turbulence,” in Dokl. Akad.

Nauk SSSR, Vol. 32 (JSTOR, 1941) pp. 16–18.

27P. Schaefer, M. Gampert, L. Wang, and N. Peters, “Fast and slow changes of the length of

gradient trajectories in homogeneous shear turbulence,” in Advances in Turbulence XII

(Springer, 2009) pp. 565–569.

28N. Peters, Turbulent combustion (Cambridge university press, 2000).

29A. Scholtissek, F. Dietzsch, M. Gauding, and C. Hasse, “In-situ tracking of mixture fraction

gradient trajectories and unsteady flamelet analysis in turbulent non-premixed combustion,”

Combustion and Flame 175, 243–258 (2017).

30C. Pantano, S. Sarkar, and F. Williams, “Mixing of a conserved scalar in a turbulent

reacting shear layer,” Journal of Fluid Mechanics 481, 291–328 (2003).

31M. Stephan and J. Docter, “JUQUEEN: IBM Blue Gene/Q® Supercomputer System at
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